Giới thiệu Cơ học Lagrange

Viên bi trượt không ma sát trên sợi dây. Sợi dây tác dụng phản lực C lên viên bi để giữ nó trên sợi dây. Lực không liên kết N trong trường hợp này là lực hấp dẫn. Chú ý rằng vị trí ban đầu của sợi dây có thể dẫn tới các chuyển động khác nhau.Mô hình con lắc đơn. Giả sử thanh nối là một vật rắn tuyệt đối, vị trí của quả lắc bị giới hạn bởi phương trình f(x, y) = 0, lực ràng buộc C là sức căng của thanh nối. Và lực không ràng buộc N là lực hấp dẫn.

Giả sử có một viên bi trượt theo sợi dây xuyên qua nó, hoặc có một con lắc đơn, v.v. Nếu coi mỗi vật nặng (như viên bi, quả lắc, v.v.) là một chất điểm, việc tính toán chuyển động của hạt sử dụng cơ học Newton đòi hỏi giải phương trình lực liên kết biến đổi theo theo thời gian để giữ cho hạt tuân theo chuyển động có ràng buộc (phản lực tác dụng bởi sợi dây lên viên bi, hoặc sức căng của thanh nối quả lắc). Khi dùng cơ học Lagrange để giải cùng một vấn đề này, dựa vào quỹ đạo của hạt mà có thể thuận tiện lựa chọn một hệ các tọa độ suy rộng độc lập cho phép miêu tả hoàn toàn chuyển động khả dĩ của hạt. Cách lựa chọn này loại bỏ các lực liên kết cần thiết trong phương trình chuyển động của hạt. Có ít phương trình hơn do không còn phải cần tính ảnh hưởng của các điều kiện liên kết lên hạt tại từng thời điểm cụ thể.

Đối với một lớp rộng các hệ thống vật lý, nếu kích thước và hình dạng của một vật nặng là bỏ qua được, cơ hệ sẽ trở lên đơn giản hơn khi coi vật là một chất điểm (hoặc hạt điểm-point particle). Một hệ có N chất điểm với khối lượng lần lượt bằng m1, m2,..., mN, mỗi hạt có một vectơ vị trí, ký hiệu bằng r1, r2,... rN. Tọa độ Descartes thường là đủ, do vậy r1 = (x1, y1, z1), r2 = (x2, y2, z2) và cứ như thế. Trong không gian ba chiều, mỗi vectơ vị trí có ba tọa độ thành phần xác định duy nhất vị trí của điểm, do vậy có 3N tọa độ xác định duy nhất cấu hình của hệ. Đây là những điểm cụ thể trong không gian để định vị vị trí của các hạt, một điểm tổng quát trong không gian được viết là r = (x, y, z). Vận tốc của mỗi hạt là sự chuyển dịch quãng đường nhanh như thế nào dọc theo quỹ đạo của nó, và bằng đạo hàm thời gian của vị trí, do đó v1 = dr1/dt, v2 = dr2/dt và vân vân.

Trong cơ học Newton, phương trình chuyển động được thiết lập dựa trên các định luật của Newton. Định luật hai nói rằng "tổng lực tác dụng bằng khối lượng nhân với gia tốc", Σ F = m d2r/dt2, áp dụng cho mỗi hạt. Đối với hệ có N hạt trong không gian 3 chiều, có 3N phương trình vi phân thường bậc hai theo vị trí của các hạt cần phải giải.

Thay vì lực, cơ học Lagrange sử dụng khái niệm năng lượng xác định trong hệ. Đại lượng trung tâm của cơ học Lagrange là Lagrangian, một hàm tổng kết tính động lực của toàn bộ cơ hệ. Nói chung, hàm Lagrangian có đơn vị của năng lượng, nhưng không có một biểu thức cụ thể nào cho mọi hệ vật lý. Bất kỳ hàm nào tạo ra phương trình chuyển động đúng, mà tuân theo các định luật vật lý, có thể coi là hàm Lagrangian. Tuy vậy có thể xây dựng một biểu thức tổng quát cho một lớp lớn các ứng dụng. Hàm Lagrangian phi tương đối tính của một hệ hạt được xác định bằng[8]

L = T − V {\displaystyle L=T-V}

với

T = 1 2 ∑ k = 1 N m k v k 2 {\displaystyle T={\frac {1}{2}}\sum _{k=1}^{N}m_{k}v_{k}^{2}}

là tổng động năng của hệ, bằng tổng Σ động năng của các hạt trong hệ,[9] và V là thế năng của hệ.

Động năng là năng lượng có được từ chuyển động của hệ, và vk2 = vk · vk là bình phương độ lớn của vận tốc, tương đương với tích vô hướng của vectơ vận tốc với chính nó. Động năng là hàm chỉ của vận tốc vk, không phụ thuộc vào vị trí rk hay thời gian t, so T = T(v1, v2,...).

Thế năng của hệ phản ánh năng lượng trong tương tác giữa các hạt, ví dụ như năng lượng mà một hạt bất kỳ chịu tác động từ những hạt khác trong hệ cũng như chịu các ngoại lực bên ngoài. Đối với lực bảo toàn (ví dụ lực hấp dẫn Newton), nó là hàm chỉ của vectơ vị trí của hạt, do vậy V = V(r1, r2,...). Đối với những lực không bảo toàn mà có thể dẫn ra từ thế năng thích hợp (ví dụ thế năng điện từ), vận tốc cũng sẽ xuất hiện, V = V(r1, r2,..., v1, v2,...). Nếu có một trường ngoài hoặc lực bên ngoài tác động thay đổi theo thời gian, thế năng cũng sẽ thay đổi theo thời gian, do vậy nói chung V = V(r1, r2,..., v1, v2,..., t).

Dạng của L ở trên không còn đúng trong trường hợp của cơ học Lagrange tương đối tính, và phải được thay bằng hàm phù hợp với thuyết tương đối hẹp hoặc thuyết tương đối rộng. Và đối với hệ có lực tiêu tán tác dụng, những hàm khác phải được đưa thêm vào trong hàm L.

Một hoặc nhiều hạt có thể chịu một hoặc nhiều liên kết holonom (holonomic constraint), ví dụ như liên kết được miêu tả bằng phương trình có dạng f(r, t) = 0. Nếu số lượng liên kết trong hệ bằng C, thì mỗi liên kết có phương trình, f1(r, t) = 0, f2(r, t) = 0,... fC(r, t) = 0, mỗi phương trình có thể áp dụng cho bất kỳ hạt nào. Nếu hạt k chịu liên kết (ràng buộc) i, thì fi(rk, t) = 0. Ở thời điểm bất kỳ, tọa độ của một hạt chịu liên kết được liên hệ với nhau và không độc lập hoàn toàn. Phương trình liên kết xác định quỹ đạo khả dĩ của các hạt, nhưng không xác định vị trí hay vận tốc của chúng tại thời điểm bất kỳ. Liên kết phi holonom (nonholonomic constraint) phụ thuộc vào vận tốc, gia tốc, hoặc đạo hàm bậc cao của vị trí của hạt. Cơ học Lagrange chỉ được áp dụng đối với hệ có liên kết holonom. Ba ví dụ nêu trong chú thích[10] là khi phương trình liên kết không khả tích được, khi các liên kết có điều kiện bất đẳng thức, hoặc trường hợp các lực không bảo toàn phức tạp như ma sát. Liên kết phi holonom đòi hỏi cách xử lý đặc biệt, và có thể phải quay lại khuôn khổ của cơ học Newton hoặc sử dụng phương pháp khác.

Nếu T hoặc V hoặc cả hai phụ thuộc rõ vào thời gian do những điều kiện ràng buộc biến đổi theo thời gian hoặc do ảnh hưởng của bên ngoài, Lagrangian L(r1, r2,... v1, v2,... t) là hàm hiện phụ thuộc thời gian. Nếu cả thế năng và động năng không phụ thuộc vào thời gian, thì Lagrangian L(r1, r2,... v1, v2,...) là hàm hiện độc lập thời gian. Trong cả hai trường hợp, hàm Lagrangian luôn luôn ẩn chứa tính phụ thuộc thời gian thông qua tọa độ suy rộng.

Với các định nghĩa trên, phương trình Lagrange loại 1[11]

Lagrange's equations (First kind)

∂ L ∂ r k − d d t ∂ L ∂ r ˙ k + ∑ i = 1 C λ i ∂ f i ∂ r k = 0 {\displaystyle {\frac {\partial L}{\partial \mathbf {r} _{k}}}-{\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial L}{\partial {\dot {\mathbf {r} }}_{k}}}+\sum _{i=1}^{C}\lambda _{i}{\frac {\partial f_{i}}{\partial \mathbf {r} _{k}}}=0}

với k = 1, 2,..., N là thứ tự các hạt, có nhân tử Lagrange λi cho mỗi phương trình liên kết fi, và

∂ ∂ r k ≡ ( ∂ ∂ x k , ∂ ∂ y k , ∂ ∂ z k ) , ∂ ∂ r ˙ k ≡ ( ∂ ∂ x ˙ k , ∂ ∂ y ˙ k , ∂ ∂ z ˙ k ) {\displaystyle {\frac {\partial }{\partial \mathbf {r} _{k}}}\equiv \left({\frac {\partial }{\partial x_{k}}},{\frac {\partial }{\partial y_{k}}},{\frac {\partial }{\partial z_{k}}}\right)\,,\quad {\frac {\partial }{\partial {\dot {\mathbf {r} }}_{k}}}\equiv \left({\frac {\partial }{\partial {\dot {x}}_{k}}},{\frac {\partial }{\partial {\dot {y}}_{k}}},{\frac {\partial }{\partial {\dot {z}}_{k}}}\right)}

đạo hàm riêng của vectơ ∂/∂ tương ứng với biến được nêu (không phải đạo hàm đối với toàn bộ vectơ).[nb 1] Các chấm bên trên ký hiệu cho đạo hàm theo thời gian. Thủ tục này làm tăng số lượng phương trình cần phải giải so với định luật Newton, từ 3N lên 3N + C, bởi vì có 3N cặp phương trình vi phân thường bậc hai theo tọa độ vị trí và nhân tử, cộng với C phương trình ràng buộc. Tuy nhiên, khi giải theo tọa độ vị trí của hạt, các nhân tử có thể cho thông tin của các lực liên kết. Các tọa độ không cần thiết được loại bỏ bằng giải phương trình ràng buộc.

Trong hàm Lagrangian, các thành phần tọa độ vị trí và vận tốc là các biến độc lập, và đạo hàm của Lagrangian lấy theo các thành phần tách biệt này tuân theo quy tắc vi phân thông thường (ví dụ đạo hàm của L theo thành phần vận tốc z của hạt thứ 2, vz2 = dz2/dt, mà không cần phải có quy tắc dây chuyền hay đạo hàm toàn phần kỳ lạ nào để có thể liên hệ thành phần vận tốc tương ứng của tọa độ z2).

Trong mỗi phương trình ràng buộc, một tọa độ là thừa do nó được xác định từ hai tọa độ kia. Số tọa độ độc lập do vậy bằng n = 3N − C. Chúng ta có thể biến đổi mỗi vectơ vị trí về một tập hợp chung chứa n tọa độ suy rộng, viết một cách thuận tiện là n-bộ q = (q1, q2,... qn), bằng cách biểu diễn mỗi vectơ vị trí, và do đó các tọa độ vị trí, như là hàm số theo các tọa độ suy rộng và thời gian,

r k = r k ( q , t ) = ( x k ( q , t ) , y k ( q , t ) , z k ( q , t ) , t ) . {\displaystyle \mathbf {r} _{k}=\mathbf {r} _{k}(\mathbf {q} ,t)=(x_{k}(\mathbf {q} ,t),y_{k}(\mathbf {q} ,t),z_{k}(\mathbf {q} ,t),t)\,.}

Vectơ q là một điểm trong không gian cấu hình (configuration space) của hệ. Đạo hàm thời gian của tọa độ suy rộng được gọi là vận tốc suy rộng, và đối với mỗi hạt phép biến đổi của vectơ vận tốc, đạo hàm toàn phần của vị trí theo thời gian bằng

q ˙ j = d q j d t , v k = ∑ j = 1 n ∂ r k ∂ q j q ˙ j + ∂ r k ∂ t . {\displaystyle {\dot {q}}_{j}={\frac {\mathrm {d} q_{j}}{\mathrm {d} t}}\,,\quad \mathbf {v} _{k}=\sum _{j=1}^{n}{\frac {\partial \mathbf {r} _{k}}{\partial q_{j}}}{\dot {q}}_{j}+{\frac {\partial \mathbf {r} _{k}}{\partial t}}\,.}

Đối với vận tốc suy rộng vk, động năng trong tọa độ suy rộng phụ thuộc vào vận tốc suy rộng, tọa độ suy rộng, và thời gian nếu vectơ vị trí phụ thuộc rõ ràng vào thời gian do các liên kết ràng buộc biến đổi theo thời gian, do vậy T = T(q, dq/dt, t).

Với các định nghĩa này ta có phương trình Euler–Lagrange, hay phương trình Lagrange loại 2[12][13]

Lagrange's equations (Second kind)

d d t ( ∂ L ∂ q ˙ j ) = ∂ L ∂ q j {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {\partial L}{\partial {\dot {q}}_{j}}}\right)={\frac {\partial L}{\partial q_{j}}}}

là các kết quả toán học từ phép tính biến phân, mà cũng được áp dụng trong cơ học. Thay thế vào hàm Lagrangian L(q, dq/dt, t), thu được phương trình chuyển động của hệ. Số lượng phương trình đã giảm đi so với của cơ học Newton, từ 3N xuống còn n = 3N − C cặp phương trình vi phân thường bậc hai trong hệ tọa độ suy rộng. Các phương trình này không còn bao gồm các lực liên kết, chỉ có các lực phi liên kết mới phải tính đến.

Mặc dù phương trình chuyển động có chứa đạo hàm riêng, các kết quả của đạo hàm riêng vẫn là phương trình vi phân thường trong tọa độ vị trí của các hạt. Đạo hàm thời gian toàn phần ký hiệu bằng d/dt thường bao gồm lấy vi phân hàm ẩn. Các phương trình này có dạng tuyến tính theo Lagrangian, nhưng nói chung là hệ phương trình phi tuyến theo tọa độ.

Tài liệu tham khảo

WikiPedia: Cơ học Lagrange http://www.amazon.com/gp/product/1461439299/ref=ol... http://www.eftaylor.com/software/ActionApplets/Lea... http://www.pearsonhighered.com/educator/product/Cl... http://adsabs.harvard.edu/abs/2013PhRvD..88j4037B http://adsabs.harvard.edu/abs/2013PhRvL.110q4301G http://adsabs.harvard.edu/abs/2014IJMPA..2950132B http://portail.mathdoc.fr/cgi-bin/oetoc?id=OE_LAGR... //www.ncbi.nlm.nih.gov/pubmed/23679733 //arxiv.org/abs/1210.2745 //arxiv.org/abs/1305.6930